Proteomic High Affinity Zn2+ Trafficking: Where Does Metallothionein Fit in?

نویسندگان

  • David H. Petering
  • Afsana Mahim
چکیده

The cellular constitution of Zn-proteins and Zn-dependent signaling depend on the capacity of Zn2+ to find specific binding sites in the face of a plethora of other high affinity ligands. The most prominent of these is metallothionein (MT). It serves as a storage site for Zn2+ under various conditions, and has chemical properties that support a dynamic role for MT in zinc trafficking. Consistent with these characteristics, changing the availability of zinc for cells and tissues causes rapid alteration of zinc bound to MT. Nevertheless, zinc trafficking occurs in metallothionein-null animals and cells, hypothetically making use of proteomic binding sites to mediate the intracellular movements of zinc. Like metallothionein, the proteome contains a large concentration of proteins that strongly coordinate zinc. In this environment, free Zn2+ may be of little significance. Instead, this review sets forth the basis for the hypothesis that components of the proteome and MT jointly provide the platform for zinc trafficking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into Zn2+ homeostasis in neurons from experimental and modeling studies.

To understand the mechanisms of neuronal Zn2+ homeostasis better, experimental data obtained from cultured cortical neurons were used to inform a series of increasingly complex computational models. Total metals (inductively coupled plasma-mass spectrometry), resting metallothionein, (65)Zn2+ uptake and release, and intracellular free Zn2+ levels using ZnAF-2F were determined before and after n...

متن کامل

Regulation of zinc homeostasis by inducible NO synthase-derived NO: nuclear metallothionein translocation and intranuclear Zn2+ release.

Zn2+ is critical for the functional and structural integrity of cells and contributes to a number of important processes including gene expression. It has been shown that NO exogenously applied via NO donors resulting in nitrosative stress leads to cytoplasmic Zn2+ release from the zinc storing protein metallothionein (MT) and probably other proteins that complex Zn2+ via cysteine thiols. We sh...

متن کامل

Zinc-Binding Cysteines: Diverse Functions and Structural Motifs

Cysteine residues are known to perform essential functions within proteins, including binding to various metal ions. In particular, cysteine residues can display high affinity toward zinc ions (Zn2+), and these resulting Zn2+-cysteine complexes are critical mediators of protein structure, catalysis and regulation. Recent advances in both experimental and theoretical platforms have accelerated t...

متن کامل

Detection of Zn2+ release in nitric oxide treated cells and proteome: dependence on fluorescent sensor and proteomic sulfhydryl groups.

Nitric oxide (NO) is both an important regulatory molecule in biological systems and a toxic xenobiotic. Its oxidation products react with sulfhydryl groups and either nitrosylate or oxidize them. The aerobic reaction of NO supplied by diethylamine NONOate (DEA-NO) with pig kidney LLC-PK1 cells and Zn-proteins within the isolated proteome was examined with three fluorescent zinc sensors, zinqui...

متن کامل

Exposure of human proximal tubule cells to cd2+, zn2+, and Cu2+ induces metallothionein protein accumulation but not metallothionein isoform 2 mRNA.

The organization of the human metallothionein (MT) gene family is more complex than the commonly used mouse and rat models. The human MTs are encoded by a family of genes consisting of 10 functional and 7 nonfunctional MT isoforms. One objective of this study was to determine if the accumulation of MT protein in cultures of human proximal tubule (HPT) cells exposed to metals is similar to that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017